余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
定义
的邻边/斜边(直角三角形)。记作cos=x/r。
时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
。
(1)已知三角形的三条边长,可求出三个内角;
(2)已知三角形的两边及夹角,可求出第三边;
(3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)
余弦定理
余弦定理还可以用以下形式表达:
(物理力学方面的平行四边形定则中也会用到)
第一余弦定理
任意三角形射影定理
,则有
两根判别法
若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值:
①若m(c1,c2)=2,则有两解;
②若m(c1,c2)=1,则有一解;
③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
角边判别法
1、当a>bsinA时:
①当b>a且cosA>0(即A为锐角)时,则有两解;
②当b>a且cosA≤0(即A为直角或钝角)时,则有零解(即无解);
③当b=a且cosA>0(即A为锐角)时,则有一解;
④当b=a且cosA≤0(即A为直角或钝角)时,则有零解(即无解);
⑤当b<a时,则有一解。
2、当a=bsinA时:
①当cosA>0(即A为锐角)时,则有一解;
②当cosA≤0(即A为直角或钝角)时,则有零解(即无解)。
3、当a<bsinA时,则有零解(即无解)。
证明方法
平面向量证法
∵a+b=c,(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)。
∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|Cos(π-θ),(以上粗体字符表示向量)
又∵Cos(π-θ)= - CosC,
∴c2=a2+b2-2|a||b|Cosθ。(注意:这里用到了三角函数公式)
再拆开,得c2=a2+b2-2abCosC,
。
同理可证其他,而下面的CosC=(c2-b2-a2)/(2ab)就是将CosC移到左边表示一下。
平面几何证法
在任意△ABC中,
做AD⊥BC,交BC于D,
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a,
则有BD=c*cosB,AD=c*sinB,DC=BC-BD=a-c*cosB。
根据勾股定理可得:
AC2=AD2+DC2,
b2=(c*sinB)2+(a-c*cosB)2,
b2=(c*sinB)2+a2-2ac*cosB+(cosB)2*c2,
b2=(sin2B+cos2B)*c2-2ac*cosB+a2,
b2=c2+a2-2ac*cosB,
cosB=(c2+a2-b2)/2ac。
三角恒等变换
二倍角公式
三倍角公式
半角公式
幂简约公式
和差化积公式
万能公式
其他
用其它三角函数来表示余弦
函数
两个角的和及差的余弦
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方关系:sin²α+cos²α=1。