概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
发展过程
起源
概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano)开始研究掷骰子等赌博中的一些简单问题。
发展
定义
传统概率
传统概率又叫拉普拉斯概率,因为其定义是由法国数学家拉普拉斯提出的。如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验。在拉普拉斯试验中,事件A在事件空间S中的概率P(A)为:
公理化定义
如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
以下是公理化定义:
设随机实验E的样本空间为Ω。若按照某种方法,对E的每一事件A赋于一个实数P(A),且满足以下公理:
(1)非负性:P(A)≥0;
(2)规范性:P(Ω)=1;
统计定义
事件
事件包括单位事件、事件空间、随机事件等。
。
。
事件的计算
因为事件在一定程度上是以集合的含义定义的,因此可以把集合计算方法直接应用于事件的计算,也就是说,在计算过程中,可以把事件当作集合来对待。
A的补集
不属于A的事件发生
联集A∪B
或者A或者B或者A,B同时发生
交集A∩B
事件A,B同时发生
差集A\B
不属于B的A事件发生)
空集A∩B=∅A,B事件不同时发生
子集B⊆A
如A发生,则B也一定发生
在轮盘游戏中假设A代表事件“球落在红色区域”,B代表事件"球落在黑色区域",C代表事件"球落在绿色区域",因为事件A和B没有共同的单位事件,因此可表示为概率P(AB)=0。
。
条件概率
相关事例
人们普遍认为,对将要发生的机率的一种不好的感觉,或者说不安全感(俗称“点背”)是实际存在的。下面列出的几个例子可以形象阐述人们有时对机率存在的错误的认识:
(1)六合彩:在六合彩(49选6)中,一共有13983816种可能性,普遍认为,如果每周都买一个不相同的号,最晚可以在13983816/52(周)=268919年后获得头等奖。事实上这种理解是错误的,因为每次中奖的机率是相等的,中奖的可能性并不会因为时间的推移而变大。
(2)生日悖论:在一个足球场上有23个人(2×11个运动员和1个裁判员),不可思议的是,在这23人当中至少有两个人的生日是在同一天的机率要大于50%。
(3)轮盘游戏:在游戏中玩家普遍认为,在连续出现多次红色后,出现黑色的机率会越来越大。这种判断也是错误的,即出现黑色的机率每次是相等的,因为球本身并没有“记忆”,它不会意识到以前都发生了什么,其机率始终是18/37。
(4)三门问题:在电视台举办的猜隐藏在门后面的汽车的游戏节目中,在参赛者的对面有三扇关闭的门,其中只有一扇门的后面有一辆汽车,其它两扇门后是山羊。游戏规则是,参赛者先选择一扇他认为其后面有汽车的门,但是这扇门仍保持关闭状态,紧接着主持人打开没有被参赛者选择的另外两扇门中后面有山羊的一扇门,这时主持人问参赛者,要不要改变主意,选择另一扇门,以使得赢得汽车的机率更大一些?
正确结果是,如果参赛者改变初衷,他的中奖概率将变成2/3。因为打开山羊门的那一刹那,本来的选择结果已经从1/3几率变到了1/2几率,如果改变初衷此时将是1/2中奖的几率。
计算
需要提及的是下面将要介绍的9个计算概率的定理与上面已经提及的事件的计算没有关系,所有关于概率的定理均由概率的3个公理得来,同时适用于包括拉普拉斯概率和统计概率在内的所有概率理论。
定理1
又称互补法则。
与A互补事件的概率始终是1-P(A)。
定理2
不可能事件的概率为零。
证明: Q和S是互补事件,按照公理2有P(S)=1,再根据上面的定理1得到P(Q)=0
定理3
如果A1...An事件不能同时发生(为互斥事件),而且若干事件A1,A2,...An∈S每两两之间是空集关系,那么这些所有事件集合的概率等于单个事件的概率的和。
定理4
定理5
任意事件加法法则:
定理6
乘法法则:
,前提为事件A,B有一定关联。
定理7
无关事件乘法法则:
忽视这一定理是造成许多玩家失败的根源,普遍认为,经过连续出现若干次红色后,黑色出现的概率会越来越大,事实上两种颜色每次出现的概率是相等的,之前出现的红色与之后出现的黑色之间没有任何联系,因为球本身并没有"记忆",它并不"知道"以前都发生了什么。
统计概率
统计概率是建立在频率理论基础上的,分别由英国逻辑学家约翰(John Venn,1834-1923)和奥地利数学家理查德(Richard VonMises,1883-1953)提出,他们认为,获得一个事件的概率值的唯一方法是通过对该事件进行100次,1000次或者甚至10000次的前后相互独立的n次随机试验,针对每次试验均记录下绝对频率值和相对频率值hn(A),随着试验次数n的增加,会出现如下事实,即相对频率值会趋于稳定,它在一个特定的值上下浮动,也即是说存在着一个极限值P(A),相对频率值趋向于这个极限值。
。
例如,若想知道在一次掷骰子的随机试验中获得6点的概率值可以对其进行3000次前后独立的扔掷试验,在每一次试验后记录下出现6点的次数,然后通过计算相对频率值可以得到趋向于某一个数的统计概率值。
扔掷数
获得6点的绝对频率
获得6点的相对频率
1
1
1.00000
2
1
0.50000
3
1
0.33333
4
1
0.25000
5
2
0.40000
10
2
0.20000
20
5
0.25000
100
12
0.12000
200
39
0.19500
300
46
0.15333
400
72
0.18000
500
76
0.15200
600
102
0.17000
700
120
0.17143
1000
170
0.17000
2000
343
0.17150
3000
560
0.16867
完全概率
例如,一个随机试验工具由一个骰子和一个柜子中的三个抽屉组成,抽屉1里有14个白球和6个黑球,抽屉2里有2个白球和8个黑球,抽屉3里有3个白球和7个黑球,试验规则是首先掷骰子,如果获得小于4点,则抽屉1被选择,如果获得4点或者5点,则抽屉2被选择,其他情况选择抽屉3。然后在选择的抽屉里随机抽出一个球,最后抽出的这个球是白球的概率是:
P(白)=P(白|抽1)·P(抽1)+P(白|抽2)·P(抽2)+P(白|抽3)·P(抽3)
=(14/20)·(3/6)+(2/10)·(2/6)+(3/10)·(1/6)
=28/60=0.4667
贝叶斯定理
一座别墅在过去的20年里一共发生过2次被盗,别墅的主人有一条狗,狗平均每周晚上叫3次,在盗贼入侵时狗叫的概率被估计为0.9,问题是:在狗叫的时候发生入侵的概率是多少?
。
另一个例子,现分别有A,B两个容器,在容器A分别有7个红球和3个白球,在容器B里有1个红球和9个白球,现已知从这两个容器里任意抽出了一个球,且是红球,问这个红球是来自容器A的概率是多少?
。
虽然概率论最早产生于17世纪,然而其公理体系却在20世纪的20至30年代才建立起来并得到迅速发展,在过去的半个世纪里概率论在越来越多的新兴领域显示了它的应用性和实用性,例如:物理、化学、生物、医学、心理学、社会学、政治学、教育学,经济学以及几乎所有的工程学等领域。